
CS103 Handout 30
Spring 2015 June 4, 2015

Practice CS103 Final Exam

This practice exam is closed-book and closed-computer but open-note. You may have a double-
sided, 8.5” × 11” sheet of notes with you when you take this exam. Please hand-write all of your
solutions on this physical copy of the exam.

On the actual exam, there'd be space here for you to write your name and sign a
statement saying you abide by the Honor Code. We're not collecting or grading this
practice exam (though you're welcome to step outside and chat with us about it
when you're done!) and this exam doesn't provide any extra credit, so we've opted
to skip that boilerplate.

You have three hours to complete this practice exam. There are 48 total points. This practice exam
is purely optional and will not directly impact your grade in CS103, but we hope that you find it to
be a useful way to prepare for the final exam. You may find it useful to read through all the ques-
tions to get a sense of what this exam contains before you begin.

Question Points Graders

(1) Induction / 4

(2) Graphs and Cardinality / 5

(3) Sets and Functions / 6

(4) Regular Languages / 10

(5) Context-Free Languages / 4

(6) R and RE Languages / 15

(7) P and NP Languages / 4

/ 48

Good Luck!

2 / 14

Problem One: Induction (4 Points)
Prove by induction that if n ∈ ℕ and n ≥ 2, then

log2 3 · log3 4 · log4 5 · … · logn (n + 1) = log2 (n + 1).

You might want to use the change of base formula for logarithms: for any c ∈ ℝ with c > 1,

logab=
logc b

logc a

3 / 14

Problem Two: Graphs and Cardinality (5 Points)
Below is a series of statements. For each statement, decide whether it's true or false. No justifica-
tion is necessary.

i. (1 Point) There is a tournament T that does not contain a cycle of length three.

ii. (1 Point) If G is a planar graph, then every node in G has degree five or less.

iii. (1 Point) If G is an undirected graph that contains a simple cycle of length k+1, then G is
not k-colorable.

iv. (1 Point) If A and B are sets and A ≠ B, then |A| < |B| or |B| < |A|.

v. (1 Point) |ℕ137| = |ℤ103|.

4 / 14

Problem Three: Sets and Functions (6 Points)
Let f : A → B be an arbitrary function with domain A and codomain B. Normally, we've talked
about what happens when you apply f to a specific element a ∈ A (this is the value f(a)). We can
generalize this to talk about what happens when you apply f to multiple elements of A, then gather
the resulting elements into a set.

Let f : A → B be any function and let S be any subset of A. The image of S under f, denoted f[S],
is the set of values produced by applying f to each element of S. Formally:

f[S] = { b ∈ B | there is some a ∈ S such that f(a) = b }

Here are some examples:

• If f : ℕ → ℕ is the function f(n) = n + 2, then f[{1, 2, 3}] = {3, 4, 5} because f(1) = 3,
f(2) = 4, and f(3) = 5.

• If g : ℤ → ℕ is the function g(x) = x2, then g[{-1, 0, 1, 2}] = {0, 1, 4} because g(-1) = 1,
g(0) = 0, g(1) = 1, and g(2) = 4.

• If h : ℕ → ℕ is the function h(n) = 103, then h[Ø] = Ø because there are no elements in Ø
to which we can apply f.

In this question, we'll ask you to explore two related sets, the set f[S₁ ∩ S₂] (the image of S₁ ∩ S₂),
and the set f[S₁] ∩ f[S₂] (the intersection of the images of S₁ and S₂).

Let f : A → B be an injection. Prove that if S₁ ⊆ A and S₂ ⊆ A, then f[S₁ ∩ S₂] = f[S₁] ∩ f[S₂]. As a
hint, remember that to prove two sets are equal to one another, you can show that each set is a sub-
set of the other.

5 / 14

(Extra space for your answer to Problem Three, if you need it.)

6 / 14

Problem Four: Regular Languages (10 Points)
Recall that a path in a graph is a series of nodes v₁, v₂, …, vₙ such that each pair of adjacent nodes
in the path is connected by an edge.

Consider the following graph G:

A B

C

Let Σ = {A, B, C}. We can represent a path in G as a nonempty string where the letters spell out
the path in the graph. For example, the path A, B, C, C would be represented by the string ABCC.

Let L = { w ∈ Σ* | w represents a path in G }, where G is the graph given above. For example:

A ∈ L

ABC ∈ L

BCC ∈ L

CCABA ∈ L

ACC ∉ L

ε ∉ L

BBA ∉ L

ABBC ∉ L

i. (3 Points) Design a DFA for L.

7 / 14

Let Σ = {1, 2, ≤} and let L be the language defined as follows:

L = { w ∈ Σ* | w is a valid chain of inequalities relating the numbers 1 and 2 }.

For example:

1≤2 ∈ L

1≤1≤2≤2 ∈ L

2≤2≤2 ∈ L

1≤1≤1≤1 ∈ L

1≤1≤2 ∈ L

2≤≤ ∉ L

≤2 ∉ L

ε ∉ L

1 ∉ L

12≤22 ∉ L

Note in particular that inequalities involving numbers like 12, 222, 121212, etc. whose digits are 1
and 2 aren't allowed (the inequality should only relate the numbers 1 and 2) and any individual
number itself isn't allowed.

ii. (2 Points) Write a regular expression for L.

8 / 14

Let Σ = {a, b} and consider the following language over Σ:

L = { w ∈ Σ* | w has odd length and its middle character is a }

iii. (4 Points) Prove that L is not a regular language.

9 / 14

As a reminder, the language L over Σ = {a, b} from the previous page was defined as follows:

L = { w ∈ Σ* | w has odd length and its middle character is a }

You just proved that this language is not regular. However, below is an NFA that purportedly has
language L:

q₀ q₁

Σ

a ε q₂

Σ

start

Here is a line of reasoning that claims that this NFA has language L:

“Intuitively, this NFA will sit in state q₀ following its Σ transition until it nondeter-
ministically guesses that it's about to read the middle a character. When it does, it
transitions to q₁, where it keeps following the Σ transition as long as more charac-
ters are available. Finally, once it's read all the characters of the input, the NFA
follows the ε transition from q₁ to q₂, where the NFA then accepts.”

Of course, this reasoning has to be incorrect, since L is not a regular language.

iv. (1 Point) Without using the fact that L is not a regular language, explain why the above
NFA is not an NFA for the language L.

10 / 14

Problem Five: Context-Free Languages (4 Points)
On Problem Set 6, you explored the language ADD over the alphabet { 1, +, ≟ }, which was de-
fined as follows:

ADD = { 1m+1n 1≟ m+n | m, n ∈ ℕ }

Consider the following generalization of ADD, which we will call MULTIADD, which consists of all
strings describing unary encodings of two sums that equal one another. For example:

1 + 3 = 4 would be encoded as 1+111 1111≟

4 = 1 + 3 would be encoded as 1111 1+111≟

2 + 2 = 1 + 3 would be encoded as 11+11 1+111≟

2+0+2+0=0+4+0 would be encoded as 11++11+ +1111+≟

0=0 would be encoded as ≟

Notice that there can be any number of summands on each side of the ≟, but there should be ex-
actly one ≟ in the string; thus 1 1 1≟ ≟ ∉ MULTIADD.

Write a CFG that generates MULTIADD.

11 / 14

Problem Six: R and RE Languages (15 Points)
Consider the following language L:

L = { ⟨M⟩ | M is a TM with input alphabet {a, b} and
 M accepts exactly one string of each length }

i. (5 Points) Prove that L ∉ R.

12 / 14

Recall that a verifier for a language L is a TM V such that

• V halts on all inputs, and

• ∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Let's say that a weak verifier for a language L is a TM X such that

• ∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. X accepts ⟨w, c⟩)

In other words, a weak verifier for a language L is like a normal verifier for L, except that it's not re-
quired to halt on all inputs.

ii. (4 Points) Prove that if X is a weak verifier for a language L, then L ∈ RE.

13 / 14

ii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of eight numbered languages. For
each of those languages, draw where in the Venn diagram that language belongs. As an ex-
ample, we've indicated where Language 1 and Language 2 should go. No proofs or justifi-
cations are necessary, and each language is worth exactly one point.

RER

ALL

1

2

REG

1. Σ*

2. EQTM

3. { anbncn | n ∈ ℕ }

4. The concatenation of language (1) and language (3). Assume Σ = { a, b, c }

5. The union of language (1) and language (3). Assume Σ = { a, b, c }

6. { ⟨w₁, w₂⟩ | either w₁ is the encoding of a TM M that accepts w₂ or w₂ is the encoding of a
TM M that accepts w₁ }

7. The complement of language (3).

8. The complement of language (6).

14 / 14

Problem Seven: P and NP Languages (4 Points)
Prove that if L is a language, then L is NP-complete if and only if L ≤p 3SAT and 3SAT ≤p L.

